alexa Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
Oncology

Oncology

Journal of Nuclear Medicine & Radiation Therapy

Author(s): Li G, Ballangrud A, Kuo LC, Kang H, Kirov A,

Abstract Share this page

Abstract PURPOSE: To establish a new clinical procedure in frameless stereotactic radiosurgery (SRS) for patient setup verification at treatment couch angles as well as for head-motion monitoring during treatment using video-based optical surface imaging (OSI). METHODS: A video-based three-dimensional (3D) OSI system with three ceiling-mounted camera pods was employed to verify setup at treatment couch angles as well as to monitor head motion during treatment. A noninvasive head immobilization device was utilized, which includes an alpha head mold and a dental mouthpiece with vacuum suction; both were locked to the treatment couch. Cone beam computed tomography (CBCT) was used as the standard for image-guided setup. Orthogonal 2D-kV imaging was applied for setup verification before treatment, between couch rotations, and after treatment at zero couch angle. At various treatment couch angles, OSI setup verification was performed, relative to initial OSI setup verification at zero couch angle after CBCT setup through a coordinate transformation. For motion monitoring, the setup uncertainty was decoupled by taking an on-site surface image as new reference to detect motion-induced misalignment in near real-time (1-2 frames per second). Initial thermal instability baseline of the real-time monitoring was corrected. An anthropomorphous head phantom and a 1D positioning platform were used to assess the OSI accuracy in motion detection in longitudinal and lateral directions. Two hypofractionated (9 Gy x 3 and 6 Gy x 5) frameless stereotactic radiotherapy (SRT) patients as well as two single-fraction (21 and 18 Gy) frameless SRS patients were treated using this frameless procedure. For comparison, 11 conventional frame-based SRS patients were monitored using the OSI to serve as clinical standards. Multiple noncoplanar conformal beams were used for planning both frameless and frame-based SRS with a micromultileaf collimator. RESULTS: The accuracy of the OSI in 1D motion detection was found to be 0.1 mm with uncertainty of +/- 0.1 mm using the head phantom. The OSI registration against simulation computed tomography (CT) external contour was found to be dependent on the CT skin definition with -0.4 mm variation. For frame-based SRS patients, head-motion magnitude was detected to be <1.0 mm (0.3 +/- 0.2 mm) and <1.0 degree (0.2 degrees +/- 0.2 degrees) for 98\% of treatment time, with exception of one patient with head rotation <1.5 degrees for 98\% of the time. For frameless SRT/SRS patients, similar motion magnitudes were observed with an average of 0.3 +/- 0.2 mm and 0.2 degrees +/- 0.1 degree in ten treatments. For 98\% of the time, the motion magnitude was <1.1 mm and 1.0 degree. Complex head-motion patterns within 1.0 mm were observed for frameless SRT/SRS patients. The OSI setup verification at treatment couch angles was found to be within 1.0 mm. CONCLUSIONS: The OSI system is capable of detecting 0.1 +/- 0.1 mm 1D spatial displacement of a phantom in near real time and useful in head-motion monitoring. This new frameless SRS procedure using the mask-less head-fixation system provides immobilization similar to that of conventional frame-based SRS. Head-motion monitoring using near-real-time surface imaging provides adequate accuracy and is necessary for frameless SRS in case of unexpected head motion that exceeds a set tolerance. This article was published in Med Phys and referenced in Journal of Nuclear Medicine & Radiation Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords