alexa Motor skill training and strength training are associated with different plastic changes in the central nervous system.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Jensen JL, Marstrand PC, Nielsen JB

Abstract Share this page

Abstract Changes in corticospinal excitability induced by 4 wk of heavy strength training or visuomotor skill learning were investigated in 24 healthy human subjects. Measurements of the input-output relation for biceps brachii motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation were obtained at rest and during voluntary contraction in the course of the training. The training paradigms induced specific changes in the motor performance capacity of the subjects. The strength training group increased maximal dynamic and isometric muscle strength by 31\% (P < 0.001) and 12.5\% (P = 0.045), respectively. The skill learning group improved skill performance significantly (P < 0.001). With one training bout, the only significant change in transcranial magnetic stimulation parameters was an increase in skill learning group maximal MEP level (MEP(max)) at rest (P = 0.02) for subjects performing skill training. With repeated skill training three times per week for 4 wk, MEP(max) increased and the minimal stimulation intensity required to elicit MEPs decreased significantly at rest and during contraction (P < 0.05). In contrast, MEP(max) and the slope of the input-output relation both decreased significantly at rest but not during contraction in the strength-trained subjects (P < or = 0.01). No significant changes were observed in a control group. A significant correlation between changes in neurophysiological parameters and motor performance was observed for skill learning but not strength training. The data show that increased corticospinal excitability may develop over several weeks of skill training and indicate that these changes may be of importance for task acquisition. Because strength training was not accompanied by similar changes, the data suggest that different adaptive changes are involved in neural adaptation to strength training. This article was published in J Appl Physiol (1985) and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]line.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords