alexa Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus.
Dentistry

Dentistry

Dentistry

Author(s): Carpentier A, Duchateau J, Hainaut K

Abstract Share this page

Abstract 1. In 67 single motor units, the mechanical properties, the recruitment and derecruitment thresholds, and the discharge rates were recorded concurrently in the first dorsal interosseus (FDI) of human subjects during intermittent fatiguing contractions. The task consisted of isometric ramp-and-hold contractions performed at 50 \% of the maximal voluntary contraction (MVC). The purpose of this study was to examine the influence of fatigue on the behaviour of motor units with a wide range of activation thresholds. 2. For low-threshold (< 25 \% MVC) motor units, the mean twitch force increased with fatigue and the recruitment threshold either did not change or increased. In contrast, the twitch force and the activation threshold decreased for the high-threshold (> 25 \% MVC) units. The observation that in low-threshold motor units a quick stretch of the muscle at the end of the test reset the unit force and recruitment threshold to the prefatigue value suggests a significant role for fatigue-related changes in muscle stiffness but not twitch potentiation or motor unit synchronization. 3. Although the central drive intensified during the fatigue test, as indicated by an increase in surface electromyogram (EMG), the discharge rate of the motor units during the hold phase of each contraction decreased progressively over the course of the task for motor units that were recruited at the beginning of the test, especially the low-threshold units. In contrast, the discharge rates of newly activated units first increased and then decreased. 4. Such divergent behaviour of low- and high-threshold motor units could not be individually controlled by the central drive to the motoneurone pool. Rather, the different behaviours must be the consequence of variable contributions from motoneurone adaptation and afferent feedback from the muscle during the fatiguing contraction.
This article was published in J Physiol and referenced in Dentistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords