alexa Move it or lose it: axis specification in Xenopus.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Weaver C, Kimelman D

Abstract Share this page

Abstract A long-standing question in developmental biology is how amphibians establish a dorsoventral axis. The prevailing view has been that cortical rotation is used to move a dorsalizing activity from the bottom of the egg towards the future dorsal side. We review recent evidence that kinesin-dependent movement of particles containing components of the Wnt intracellular pathway contributes to the formation of the dorsal organizer, and suggest that cortical rotation functions to align and orient microtubules, thereby establishing the direction of particle transport. We propose a new model in which active particle transport and cortical rotation cooperate to generate a robust movement of dorsal determinants towards the future dorsal side of the embryo. This article was published in Development and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords