alexa Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene.
Oncology

Oncology

Journal of Carcinogenesis & Mutagenesis

Author(s): Zhou D, Conrad C, Xia F, Park JS, Payer B,

Abstract Share this page

Abstract Hippo-Lats-Yorkie signaling regulates tissue overgrowth and tumorigenesis in Drosophila. We show that the Mst1 and Mst2 protein kinases, the mammalian Hippo orthologs, are cleaved and constitutively activated in the mouse liver. Combined Mst1/2 deficiency in the liver results in loss of inhibitory Ser127 phosphorylation of the Yorkie ortholog, Yap1, massive overgrowth, and hepatocellular carcinoma (HCC). Reexpression of Mst1 in HCC-derived cell lines promotes Yap1 Ser127 phosphorylation and inactivation and abrogates their tumorigenicity. Notably, Mst1/2 inactivates Yap1 in liver through an intermediary kinase distinct from Lats1/2. Approximately 30\% of human HCCs show low Yap1(Ser127) phosphorylation and a majority exhibit loss of cleaved, activated Mst1. Mst1/2 inhibition of Yap1 is an important pathway for tumor suppression in liver relevant to human HCC.
This article was published in Cancer Cell and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords