alexa Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Merga Y, Campbell BJ, Rhodes JM

Abstract Share this page

Abstract The mucosal barrier has three major components, the mucus layer, the epithelial glycocalyx and the surface epithelium itself, whose integrity largely depends on tight junction function. In health, there is relatively little direct interaction between the luminal microbiota and the epithelium - the continuous mucus layer in the colon keeps the surface epithelium out of contact with bacteria and the ileo-caecal valve ensures that the distal small intestine is relatively microbe free. Most interaction takes place at the Peyer's patches in the distal ileum and their smaller colonic equivalents, the lymphoid follicles. Peyer's patches are overlain by a 'dome' epithelium, 5\% of whose cells are specialised M (microfold) epithelial cells, which act as the major portal of entry for bacteria. There are no goblet cells in the dome epithelium and M cells have a very sparse glycocalyx allowing easy microbial interaction. It is intriguing that the typical age range for the onset of Crohn's disease (CD) is similar to the age at which the number of Peyer's patches is greatest. Peyer's patches are commonly the sites of the initial lesions in CD and the 'anti-pancreatic' antibody associated with CD has been shown to have as its epitope the glycoprotein 2 that is the receptor for type-1 bacterial fimbrial protein (fimH) on M cells. There are many reasons to believe that the mucosal barrier is critically important in the pathogenesis of inflammatory bowel disease (IBD). These include (i) associations between both CD and ulcerative colitis (UC) with genes that are relevant to the mucosal barrier; (ii) increased intestinal permeability in unaffected relatives of CD patients; (iii) increased immune reactivity against bacterial antigens, and (iv) animal models in which altered mucosal barrier, e.g. denudation of the mucus layer associated with oral dextran sulphate in rodents, induces colitis. Whilst some IBD patients may have genetic factors leading to weakening of the mucosal barrier, it is likely that environmental factors may be even more important. Some may be subtle and indirect, e.g. the effects of stress on the mucosa barrier, whilst others may be more obvious, e.g. the effect of pathogen-related gastroenteritis, known often to act as trigger for IBD relapse. We have also been very interested in the potentially harmful effects of ingested detergents - either by contamination of cutlery by inadequate rinsing or via ingestion of processed foods containing permitted emulsifiers. In vitro and ex vivo studies show that even very small trace amounts of these surfactants can greatly increase bacterial translocation. Implications for therapy are not yet so obvious. We advise our IBD patients to avoid processed foods containing emulsifiers and to rinse their dishes well - whilst accepting that there is no direct evidence yet to support this. Therapies that aim to enhance the mucosal barrier have yet to come to market, but trials of enteric-delivered phosphatidylcholine in UC are promising. The faecal concentration of mucus-degrading bacterial enzymes (particularly proteases, sulphatases and sialidases) correlates with disease activity in UC, and these represent good targets for therapy. © 2014 S. Karger AG, Basel. This article was published in Dig Dis and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords