alexa Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes


Clinical Microbiology: Open Access

Author(s): Aurlie A Huet, Jose L Raygada, Kabir Mendiratta, Susan M Seo, Glenn W Kaatz

Abstract Share this page

Biocides and dyes are commonly employed in hospital and laboratory settings. Many of these agents are substrates for multiple-drug resistance (MDR)-conferring efflux pumps of both Gram-positive and Gram-negative organisms. Several such pumps have been identified in Staphylococcus aureus, and mutants overexpressing the NorA and MepA MDR pumps following exposure to fluoroquinolones have been identified. The effect of exposure to low concentrations of biocides and dyes on the expression of specific pump genes has not been evaluated. Using quantitative reverse-transcription PCR we found that exposure of clinical isolates to low concentrations of a variety of biocides and dyes in a single step, or to gradually increasing concentrations over several days, resulted in the appearance of mutants overexpressing mepA, mdeA, norA and norC, with mepA overexpression predominating. Overexpression was frequently associated with promoter-region or regulatory protein mutations. Mutants having significant increases in MICs of common pump substrates but no changes in expression of studied pump genes were also observed; in these cases changes in expression of as-yet-unidentified MDR pump genes may have occurred. Strains of S. aureus that exist in relatively protected environments and are repeatedly exposed to sublethal concentrations of biocides can develop efflux-related resistance to those agents, and acquisition of such strains poses a threat to patients treated with antimicrobial agents that are also substrates for those pumps, such as ciprofloxacin and moxifloxacin.

This article was published in Microbiology and referenced in Clinical Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version