alexa Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Current Synthetic and Systems Biology

Author(s): Boghigian BA, Zhang H, Pfeifer BA

Abstract Share this page

Abstract Polyketides represent a significant fraction of all natural products. Many possess pharmacological activity which makes them attractive drug candidates. The production of the parent macrocyclic aglycones is catalyzed by multi-modular polyketide synthases utilizing short-chain acyl-CoA monomers. When producing polyketides through heterologous hosts, one must not only functionally express the synthase itself, but activate the machinery used to generate the required substrate acyl-CoA's. As a result, metabolic engineering of these pathways is necessary for high-level production of heterologous polyketides. In this study, we over-express three different pathways for provision of the two substrates (propionyl-CoA and (2S)-methylmalonyl-CoA) utilized for the biosynthesis of 6-deoxyerythronolide B (6-dEB; the macrolactone precursor of erythromycin): (1) a propionate → propionyl-CoA → (2S)-methylmalonyl-CoA pathway, (2) a methylmalonate → methylmalonyl-CoA → propionyl-CoA pathway, and (3) a succinate → succinyl-CoA → (2R)-methylmalonyl-CoA → (2S)-methylmalonyl-CoA → propionyl-CoA pathway. The current study revealed that propionate is a necessary component for greater than 5 mg L(-1) titers. Deletion of the propionyl-CoA:succinate CoA transferase (ygfH) or over-expression of the transcriptional activator of short chain fatty acid uptake improved titer to over 100 mg L(-1), while the combination of the two improved titer to over 130 mg L(-1). The addition of exogenous methylmalonate could also improve titer to over 100 mg L(-1). Expression of a Streptomyces coelicolor A3(2) methylmalonyl-CoA epimerase, in conjunction with over-expression of Escherichia coli's native methylmalonyl-CoA mutase, allowed for the incorporation of exogenously fed succinate into the 6-dEB core. Copyright © 2011 Wiley Periodicals, Inc.
This article was published in Biotechnol Bioeng and referenced in Current Synthetic and Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Nucleic Acids , Molecular Biology & Biologics
    August 31-September 01, 2017 Philadelphia, Pennsylvania, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords