alexa Multilineage engraftment in NOD LtSz-scid scid mice from mobilized human CD34+ peripheral blood progenitor cells.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Hogan CJ, Shpall EJ, McNiece I, Keller G

Abstract Share this page

Abstract Peripheral blood progenitor cells (PBPCs) are now the most widely used source for hematopoietic support of patients in the autologous transplant setting and are increasingly being used for allogeneic transplantation. A reliable model to characterize the in vivo potential of various PBPC subpopulations could be valuable as a preclinical assay to predict the hematopoietic performance in humans of these populations and of products resulting from their manipulations ex vivo. We have used immunocompromised nonobese diabetic/LtSz-scid/scid (NOD/SCID) mice to engraft human CD34+ PBPCs and to study the repopulation characteristics of this progenitor cell fraction. Following myeloablation, intravenous infusion of CD34+ cells consistently produced engraftment and development in mice. Multilineage development occurred in all mice with CD34+ cells, erythroid precursors, and the most immature populations of myeloid cells and B lymphocytes restricted to the mouse bone marrow (BM). More mature populations of myeloid cells and B lymphocytes were peripheralized to the spleen and blood of the animals. This finding suggests that human hematopoiesis in the mice may recapitulate hematopoietic recovery in humans. The provision of human growth factors was not necessary for either engraftment or development of CD34+ cells. When mice were supplemented with growth factors, engraftment levels were unaffected but development was biased toward myeloid production. These findings indicate that providing nonphysiological levels of human growth factors may obscure or enhance the developmental potential of particular progenitor cell populations in this model. Cells capable of initiating colony formation in vitro were maintained in BM during the engraftment period (up to 17 weeks), suggesting that continuous production of myeloid and erythroid precursors occurred from more primitive hematopoietic cells subsequent to engraftment. In comparing results from this study with previous results, it was found that in this model the engraftment potential of CD34+ umbilical cord blood cells is greater than that described here for CD34+ PBPCs. In summary, this model may provide a reliable assay to predict the hematopoietic potential of progenitor cell populations in humans if a correlation for engraftment of identical cell fractions can be established between the two species.
This article was published in Biol Blood Marrow Transplant and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords