alexa Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Aikawa E

Abstract Share this page

BACKGROUND:

Visualizing early changes in valvular cell functions in vivo may predict the future risk and identify therapeutic targets for prevention of aortic valve stenosis.

METHODS AND RESULTS:

To test the hypotheses that (1) aortic stenosis shares a similar pathogenesis to atherosclerosis and (2) molecular imaging can detect early changes in aortic valve disease, we used in vivo a panel of near-infrared fluorescence imaging agents to map endothelial cells, macrophages, proteolysis, and osteogenesis in aortic valves of hypercholesterolemic apolipoprotein E-deficient mice (30 weeks old, n=30). Apolipoprotein E-deficient mice with no probe injection (n=10) and wild-type mice (n=10) served as controls. Valves of apolipoprotein E-deficient mice contained macrophages, were thicker than wild-type mice (P<0.001), and showed early dysfunction detected by MRI in vivo. Fluorescence imaging detected uptake of macrophage-targeted magnetofluorescent nanoparticles (24 hours after injection) in apolipoprotein E-deficient valves, which was negligible in controls (P<0.01). Valvular macrophages showed proteolytic activity visualized by protease-activatable near-infrared fluorescence probes. Ex vivo magnetic resonance imaging enhanced with vascular cell adhesion molecule-1-targeted nanoparticles detected endothelial activation in valve commissures, the regions of highest mechanical stress. Osteogenic near-infrared fluorescence signals colocalized with alkaline phosphatase activity and expression of osteopontin, osteocalcin, Runx2/Cbfa1, Osterix, and Notch1 despite no evidence of calcium deposits, which suggests ongoing active processes of osteogenesis in inflamed valves. Notably, the aortic wall contained advanced calcification. Quantitative image analysis correlated near-infrared fluorescence signals with immunoreactive vascular cell adhesion molecule-1, macrophages, and cathepsin-B (P<0.001).

CONCLUSIONS:

Molecular imaging can detect in vivo the key cellular events in early aortic valve disease, including endothelial cell and macrophage activation, proteolytic activity, and osteogenesis.

This article was published in Circulation. and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords