alexa Multinomial logistic regression.
Infectious Diseases

Infectious Diseases

Epidemiology: Open Access

Author(s): Kwak C, ClaytonMatthews A

Abstract Share this page

Abstract BACKGROUND: When the dependent variable consists of several categories that are not ordinal (i.e., they have no natural ordering), the ordinary least square estimator cannot be used. Instead, a maximum likelihood estimator like multinomial logit or probit should be used. OBJECTIVES: The purpose of this article is to understand the multinomial logit model (MLM) that uses maximum likelihood estimator and its application in nursing research. METHOD: The research on "Racial differences in use of long-term care received by the elderly" (Kwak, 2001) is used to illustrate the multinomial logit model approach. This method assumes that the data satisfy a critical assumption called the "independence of irrelevant alternatives." A diagnostic developed by Hausman is used to test the independence of irrelevant alternatives assumption. Models in which the dependent variable consists of several unordered categories can be estimated with the multinomial logit model, and these models can be easily interpreted. CONCLUSIONS: This method can handle situations with several categories. There is no need to limit the analysis to pairs of categories, or to collapse the categories into two mutually exclusive groups so that the (more familiar) logit model can be used. Indeed, any strategy that eliminates observations or combines categories only leads to less efficient estimates.
This article was published in Nurs Res and referenced in Epidemiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version