alexa Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells


Journal of Chemical Biology & Therapeutics

Author(s): Tugizimana F, Steenkamp PA, Piater LA, Dubery IA

Abstract Share this page

Metabolomics is providing new dimensions into understanding the intracellular adaptive responses in plants to external stimuli. In this study, a multi-technology-metabolomic approach was used to investigate the effect of the fungal sterol, ergosterol, on the metabolome of cultured tobacco cells. Cell suspensions were treated with different concentrations (0-1000 nM) of ergosterol and incubated for different time periods (0-24 h). Intracellular metabolites were extracted with two methods: a selective dispersive liquid-liquid micro-extraction and a general methanol extraction. Chromatographic techniques (GC-FID, GC-MS, GC × GC-TOF-MS, UHPLC-MS) and (1)H NMR spectroscopy were used for quantitative and qualitative analyses. Multivariate data analyses (PCA and OPLS-DA models) were used to extract interpretable information from the multidimensional data generated from the analytical techniques. The results showed that ergosterol triggered differential changes in the metabolome of the cells, leading to variation in the biosynthesis of secondary metabolites. PCA scores plots revealed dose- and time-dependent metabolic variations, with optimal treatment conditions being found to be 300 nM ergosterol and an 18 h incubation period. The observed ergosterol-induced metabolic changes were correlated with changes in defence-related metabolites. The 'defensome' involved increases in terpenoid metabolites with five antimicrobial compounds (the bicyclic sesquiterpenoid phytoalexins: phytuberin, solavetivone, capsidiol, lubimin and rishitin) and other metabolites (abscisic acid and phytosterols) putatively identified. In addition, various phenylpropanoid precursors, cinnamic acid derivatives and - conjugates, coumarins and lignin monomers were annotated. These annotated metabolites revealed a dynamic reprogramming of metabolic networks that are functionally correlated, with a high complexity in their regulation.

  • To read the full article Visit
  • Open Access
This article was published in PLoS One and referenced in Journal of Chemical Biology & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version