alexa Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Chance B, Leigh JS Jr, Kent J, McCully K, Nioka S,

Abstract Share this page

Abstract Three types of metabolic control of oxidative metabolism are observed in the various tissues that have been studied by phosphorous magnetic resonance spectroscopy. The principal control of oxidative metabolism in skeletal muscle is by ADP (or Pi/phosphocreatine). This conclusion is based upon studies of arm muscles of humans during steady-state exercise. A work-cost (Vm vs. Pi/phosphocreatine) relationship follows a Michaelis-Menten rectangular hyperbola, where Km values from 0.5 to 0.6 and Vmax values from 50 to 200 (at nearly constant pH) are found in linearized plots of the equation V/Vmax = 1/(1 + 0.6 phosphocreatine/Pi) where V is work level (which is equal to the velocity of the enzymatic reaction) and Vmax is the maximal work capacity that is a measure of the enzyme activity (E) of oxidative metabolism. Adaptation to exercise enhances the slope of the work-cost relationship and causes large changes in Vmax or E. A second metabolic control may enhance the slope of the work-cost relationship but not Vmax. For example, the initiation of exercise can lead to an improved characteristic that can be explained by 2-fold increased substrate delivery, for example, increased oxygen delivery by microcirculatory control. Cardiac tissue of the adult dog affords an example of optimal endurance performance adaptation and exhibits the steepest work-cost relationship observed and is attributed to a coordinated control of substrate delivery that may involve Ca2+ and inorganic phosphate control of NADH; control of O2 delivery may also be involved. The calculated work-cost relationship is similar to that observed in the beagle heart. The theoretical curve illustrates that the liability of multiple controls is a sharp break point in metabolic control at the end of the multiple control range--a possible cause of instability of cardiac performance at high V/Vmax.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords