alexa Multiplex Ligation-dependent Probe Amplification (MLPA®) for the detection of copy number variation in genomic sequences.


Journal of Cancer Science & Therapy

Author(s): EijkVan Os PG, Schouten JP

Abstract Share this page

Abstract Multiplex Ligation-dependent Probe Amplification (MLPA®) is a high-throughput method developed to determine the copy number of up to 50 genomic DNA sequences in a single multiplex PCR-based reaction. MLPA is easy to perform, requires only 20 ng of sample DNA and can distinguish sequences differing in only a single nucleotide. The MLPA reaction results in a mixture of amplification fragments ranging between 100 and 500 nt in length which can be separated and quantified by capillary electrophoresis. The equipment necessary for MLPA is identical to that for performing standard sequencing reactions: a thermocycler and a fluorescent capillary electrophoresis system. Comparison of the peak pattern obtained on a DNA sample to that of a reference sample indicates which sequences show aberrant copy numbers.Fundamental for the MLPA technique is that it is not the sample DNA that is amplified during the PCR reaction, but MLPA probes that hybridise to the sample DNA. Each MLPA probe consists of two probe oligonucleotides, which should hybridise adjacent to the target DNA for a successful ligation. Only ligated probes can be exponentially amplified by PCR. In contrast to standard multiplex PCR, only one pair of PCR primers is used for the MLPA PCR reaction, resulting in a more robust system. This way, the relative number of fragments present after the PCR reaction depends on the relative amount of the target sequence present in a DNA sample. This article was published in Methods Mol Biol and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version