alexa Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Galetin A, Clarke SE, Houston JB

Abstract Share this page

Abstract The potential of substrates and modifiers of CYP3A4 to show differential effects, attributed to the existence of multiple binding sites, confounds the straightforward prediction of in vivo drug-drug interactions from in vitro data. A set of in vitro interaction studies was performed in human lymphoblast-expressed CYP3A4 involving representatives of two CYP3A4 subclasses, midazolam (MDZ) and testosterone (TST); a distinct subgroup, nifedipine (NIF); and its structural analog, felodipine (FEL). Mechanistic insight into the interaction of each pair of substrates was provided by employing a range of multisite kinetic models; most were subtypes of a generic two-site model, but a three-site model was required for TST interactions. The complexity of the inhibition profiles and the selection of the kinetic model with appropriate interaction factors were dependent upon the kinetics of substrates involved (hyperbolic, substrate inhibition, or sigmoidal for MDZ/FEL, NIF, and TST, respectively). In no case was a simple reciprocity seen between pairs of substrates. The interaction profiles observed between TST, MDZ, NIF, and FEL involved several atypical inhibition features (partial, cooperative, concentration-dependent loss of characteristic homotropic behavior) and pathway-differential effects reflecting an 80-fold difference in Ki values and a delta factor (defining the alteration in the binding affinity in the presence of a modifier) ranging from 0.04 to 2.3. The conclusions from the multisite kinetic analysis performed support the hypothesis of distinct binding domains for each substrate subgroup. Furthermore, the analysis of intersubstrate interactions strongly indicates the existence of a mutual binding domain common to each of the three CYP3A4 substrate subclasses. This article was published in Drug Metab Dispos and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version