alexa Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Applied Pharmacy

Author(s): Kenworthy KE, Clarke SE, Andrews J, Houston JB

Abstract Share this page

Abstract Some substrates of cytochrome P450 (CYP) 3A4, the most abundant CYP in the human liver responsible for the metabolism of many structurally diverse therapeutic agents, do not obey classical Michaelis-Menten kinetics and demonstrate homotropic and/or heterotropic cooperativity. The unusual kinetics and differential effects observed between substrates of this enzyme confound the prediction of drug clearance and drug-drug interactions from in vitro data. We have investigated the hypothesis that CYP3A4 may bind multiple molecules simultaneously using diazepam (DZ) and testosterone (TS). Both substrates showed sigmoidal kinetics in B-lymphoblastoid microsomes containing a recombinant human CYP3A4 and reductase. When analyzed in combination, TS activated the formation of 3-hydroxydiazepam (3HDZ) and N-desmethyldiazepam (NDZ) (maximal activation 374 and 205\%, respectively). For 3HDZ, V(max) values remained constant with increasing TS, whereas the S(50) and Hill values decreased, tending to make the data less sigmoidal. Similar trends were observed for the NDZ pathway. DZ inhibited the formation 6beta-hydroxytestosterone (maximal inhibition, 45\% of control), causing a decrease in V(max) but no significant change to the S(50) and Hill values, suggesting that DZ may inhibit via a separate effector site. Multisite rate equation models have been derived to explore the analysis of such complex kinetic data and to allow accurate determination of the kinetic parameters for activation and inhibition. The data and models presented are consistent with proposals that CYP3A4 can bind and metabolize multiple substrate molecules simultaneously; they also provide a generic solution for the interpretation of the complex kinetic data derived from CYP3A4 substrates.
This article was published in Drug Metab Dispos and referenced in Journal of Applied Pharmacy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 8th Annual Pharmaceutical Analysis Congress
    Sep 25-27, 2017 Vienna, Austria
  • 12th World Pharma Congress
    October 16-18, 2017 Budapest, Hungary

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords