alexa Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Applied Pharmacy

Author(s): Kenworthy KE, Clarke SE, Andrews J, Houston JB

Abstract Share this page

Abstract Some substrates of cytochrome P450 (CYP) 3A4, the most abundant CYP in the human liver responsible for the metabolism of many structurally diverse therapeutic agents, do not obey classical Michaelis-Menten kinetics and demonstrate homotropic and/or heterotropic cooperativity. The unusual kinetics and differential effects observed between substrates of this enzyme confound the prediction of drug clearance and drug-drug interactions from in vitro data. We have investigated the hypothesis that CYP3A4 may bind multiple molecules simultaneously using diazepam (DZ) and testosterone (TS). Both substrates showed sigmoidal kinetics in B-lymphoblastoid microsomes containing a recombinant human CYP3A4 and reductase. When analyzed in combination, TS activated the formation of 3-hydroxydiazepam (3HDZ) and N-desmethyldiazepam (NDZ) (maximal activation 374 and 205\%, respectively). For 3HDZ, V(max) values remained constant with increasing TS, whereas the S(50) and Hill values decreased, tending to make the data less sigmoidal. Similar trends were observed for the NDZ pathway. DZ inhibited the formation 6beta-hydroxytestosterone (maximal inhibition, 45\% of control), causing a decrease in V(max) but no significant change to the S(50) and Hill values, suggesting that DZ may inhibit via a separate effector site. Multisite rate equation models have been derived to explore the analysis of such complex kinetic data and to allow accurate determination of the kinetic parameters for activation and inhibition. The data and models presented are consistent with proposals that CYP3A4 can bind and metabolize multiple substrate molecules simultaneously; they also provide a generic solution for the interpretation of the complex kinetic data derived from CYP3A4 substrates.
This article was published in Drug Metab Dispos and referenced in Journal of Applied Pharmacy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

1-702-714-7001Extn: 9042

General Science

Andrea Jason

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001Extn: 9042

© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version