alexa Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase Ins(1,3,4)P(3) 5 6-kinase.
Genetics & Molecular Biology

Genetics & Molecular Biology

Cloning & Transgenesis

Author(s): Yang X, Shears SB, Yang X, Shears SB

Abstract Share this page

Abstract We describe a human cDNA encoding 1-kinase activity that inactivates Ins(3,4,5,6)P(4), an inhibitor of chloride-channel conductance that regulates epithelial salt and fluid secretion, as well as membrane excitability. Unexpectedly, we further discovered that this enzyme has alternative positional specificity (5/6-kinase activity) towards a different substrate, namely Ins(1,3,4)P(3). Kinetic data from a recombinant enzyme indicate that Ins(1,3,4)P(3) (K(m)=0.3 microM; V(max)=320 pmol/min per microg) and Ins(3,4,5,6)P(4) (K(m)=0.1 microM; V(max)=780 pmol/min per microg) actively compete for phosphorylation in vivo. This competition empowers the kinase with multitasking capability in several key aspects of inositol phosphate signalling.
This article was published in Biochem J and referenced in Cloning & Transgenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version