alexa Multivariate parametric spatiotemporal models for county level breast cancer survival data.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Jin X, Carlin BP

Abstract Share this page

Abstract In clustered survival settings where the clusters correspond to geographic regions, biostatisticians are increasingly turning to models with spatially distributed random effects. These models begin with spatially oriented frailty terms, but may also include further region-level terms in the parametrization of the baseline hazards or various covariate effects (as in a spatially-varying coefficients model). In this paper, we propose a multivariate conditionally autoregressive (MCAR) model as a mixing distribution for these random effects, as a way of capturing correlation across both the regions and the elements of the random effect vector for any particular region. We then extend this model to permit analysis of temporal cohort effects, where we use the term "temporal cohort" to mean a group of subjects all of whom were diagnosed with the disease of interest (and thus, entered the study) during the same time period (say, calendar year). We show how our spatiotemporal model may be efficiently fit in a hierarchical Bayesian framework implemented using Markov chain Monte Carlo (MCMC) computational techniques. We illustrate our approach in the context of county-level breast cancer data from 22 annual cohorts of women living in the state of Iowa, as recorded by the Surveillance, Epidemiology, and End Results (SEER) database. Hierarchical model comparison using the Deviance Information Criterion (DIC), as well as maps of the fitted county-level effects, reveal the benefit of our approach.
This article was published in Lifetime Data Anal and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords