alexa Mutant K-Ras increases GSK-3β gene expression via an ETS-p300 transcriptional complex in pancreatic cancer


Journal of Carcinogenesis & Mutagenesis

Author(s): Zhang JS, Koenig A, Harrison A, Ugolkov AV, FernandezZapico ME

Abstract Share this page

Glycogen synthase kinase-3 beta (GSK-3β) is overexpressed in a number of human malignancies and has been shown to contribute to tumor cell proliferation and survival. Although regulation of GSK-3β activity has been extensively studied, the mechanisms governing GSK-3β gene expression are still unknown. Using pancreatic cancer as a model, we find that constitutively active Ras signaling increases GSK-3β gene expression via the canonical mitogen-activated protein kinase signaling pathway. Analysis of the mechanism revealed that K-Ras regulates the expression of this kinase through two highly conserved E-twenty six (ETS) binding elements within the proximal region. Furthermore, we demonstrate that mutant K-Ras enhances ETS2 loading onto the promoter, and ETS requires its transcriptional activity to increase GSK-3β gene transcription in pancreatic cancer cells. Lastly, we show that ETS2 cooperates with p300 histone acetyltransferase to remodel chromatin and promote GSK-3β expression. Taken together, these results provide a general mechanism for increased expression of GSK-3β in pancreatic cancer and perhaps other cancers, where Ras signaling is deregulated.

This article was published in Oncogene. and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version