alexa Mutant selection window hypothesis updated.
Microbiology

Microbiology

Journal of Antimicrobial Agents

Author(s): Drlica K, Zhao X

Abstract Share this page

Abstract The mutant selection window hypothesis postulates that, for each antimicrobial-pathogen combination, an antimicrobial concentration range exists in which selective amplification of single-step, drug-resistant mutants occurs. This hypothesis suggests an antimutant dosing strategy that is keyed to the upper boundary of the selection window: the mutant prevention concentration. Correlations are described between the mutant prevention concentration--a static parameter that is measured with agar plates--and fluctuating drug concentrations that restrict mutant amplification in vitro and in animals. When drug resistance is acquired stepwise, the mutant selection window increases, making the suppression of each successive mutant increasingly more difficult. For agents that kill drug-resistant mutants in a drug concentration-dependent manner, the use of the area under the 24-h time-drug concentration curve value divided by the value of the mutant prevention concentration is suggested as an index for designing antimutant dosing regimens. The need for such regimens is emphasized by a clinical example in which acquisition of drug resistance occurs concurrently with eradication of susceptible bacterial cells. These data support using the mutant selection window to optimize antimicrobial dosing regimens. This article was published in Clin Infect Dis and referenced in Journal of Antimicrobial Agents

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected].com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords