alexa Mutated tau binds less avidly to microtubules than wildtype tau in living cells.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Nagiec EW, Sampson KE, Abraham I

Abstract Share this page

Abstract Some forms of genetically inherited dementia, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), are caused by mutations in tau. We have examined several mutations in the microtubule-binding portion of tau for their effect on microtubule binding, cellular distribution and cytoskeletal structure in mammalian cells. Using constructs coding for mutant (P301L and V337M) and wildtype human tau fused to a green fluorescent protein analog (EGFP) we followed the disposition of tau in live cells after transient transfection using confocal microscopy. Most of the tau protein localized to structures that resembled microtubules or microtubule bundles and co-localized with tubulin. At 3 days post-transfection mutant tau proteins showed a higher abundance of free tau in the cytoplasm than did wildtype tau. Cells expressing the P301L mutation showed proportionally more cytoplasmic localization of tau. Confirming these results, fractionated cells with mutant tau had a higher percentage of tau in the cytoplasmic compartment as compared to the cytoskeletal compartment. Cells with wildtype tau had most tau in the cytoskeletal fraction. Because the mutations (V337M, P301L) are associated with genetic tauopathies, these results suggest that a factor in disease etiology of genetic tauopathies and other dementias with altered tau is a greater abundance of tau in the cytoplasm due to decreased binding to microtubules. This increased cytoplasmic presence may be a significant factor in promoting tau aggregation. Copyright 2001 Wiley-Liss, Inc. This article was published in J Neurosci Res and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords