alexa Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer.


Chemotherapy: Open Access

Author(s): GarciaMurillas I, Schiavon G, Weigelt B, Ng C, Hrebien S,

Abstract Share this page

Abstract The identification of early-stage breast cancer patients at high risk of relapse would allow tailoring of adjuvant therapy approaches. We assessed whether analysis of circulating tumor DNA (ctDNA) in plasma can be used to monitor for minimal residual disease (MRD) in breast cancer. In a prospective cohort of 55 early breast cancer patients receiving neoadjuvant chemotherapy, detection of ctDNA in plasma after completion of apparently curative treatment-either at a single postsurgical time point or with serial follow-up plasma samples-predicted metastatic relapse with high accuracy [hazard ratio, 25.1 (confidence interval, 4.08 to 130.5; log-rank P < 0.0001) or 12.0 (confidence interval, 3.36 to 43.07; log-rank P < 0.0001), respectively]. Mutation tracking in serial samples increased sensitivity for the prediction of relapse, with a median lead time of 7.9 months over clinical relapse. We further demonstrated that targeted capture sequencing analysis of ctDNA could define the genetic events of MRD, and that MRD sequencing predicted the genetic events of the subsequent metastatic relapse more accurately than sequencing of the primary cancer. Mutation tracking can therefore identify early breast cancer patients at high risk of relapse. Subsequent adjuvant therapeutic interventions could be tailored to the genetic events present in the MRD, a therapeutic approach that could in part combat the challenge posed by intratumor genetic heterogeneity. Copyright © 2015, American Association for the Advancement of Science. This article was published in Sci Transl Med and referenced in Chemotherapy: Open Access

Relevant Expert PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version