alexa Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.
Haematology

Haematology

Journal of Bone Research

Author(s): Wakitani S

Abstract Share this page

The compound 5-azacytidine has been previously shown to convert cells of the rat embryonic fibroblastic cell line, C3H/10T1/2, into myoblasts, adipocytes, and chondrocytes. Rare, resident cells of bone marrow and periosteum, referred to as mesenchymal stem cells, have been shown to differentiate into a number of mesenchymal phenotypes including bone, cartilage, and adipocytes. Rat bone marrow-derived mesenchymal stem cells were exposed to 5-azacytidine beginning 24 h after seeding twice-passaged cells into culture dishes. After an exposure of 24 h, long, multinucleated myotubes were observed in some of the dishes 7-11 days later. Cells containing Sudan black-positive droplets in their cytoplasm were also observed. Thus, culture-propagated rat bone marrow mesenchymal stem cells appear to have the capacity to be induced to differentiate in vitro into myogenic and adipocytic phenotypes, although nonmesenchymal cells (rat brain fibroblasts) cannot be so induced. Taken together, these observations provide support for the suggestion that mesenchymal stem cells in the bone marrow of postnatal organisms may provide a source for myoprogenitor cells which could function in clinically relevant myogenic regeneration.

This article was published in Muscle Nerve. and referenced in Journal of Bone Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version