alexa Myristoyl-coA:protein N-myristoyltransferase from bovine cardiac muscle: molecular cloning, kinetic analysis, and in vitro proteolytic cleavage by m-calpain.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Raju RV, Kakkar R, Datla RS, Radhi J, Sharma RK

Abstract Share this page

Abstract Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the attachment of myristate onto the amino terminal glycine residue of select polypeptides. Cardiac tissue expresses high levels of cAMP-dependent protein kinase whose catalytic subunit is myristoylated; however, cardiac muscle extracts were found to contain low NMT activities. Northern blot analysis of bovine heart poly(A)+ RNA probed with bovine spleen NMT cDNA revealed a 1.7-kb mRNA. Western blot analysis of cardiac muscle extracts with human NMT antibody indicated a prominent immunoreactive band with a molecular mass of 50 kDa. The expression of mRNA and protein levels in cardiac muscle is not correlated with NMT activities, suggesting the presence of regulators of the enzyme activity. We have isolated the cDNA encoding bovine cardiac muscle NMT (cNMT) by reverse transcription polymerase chain reaction. The single long open reading frame of 1248 bp of bovine cNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The cDNA clone expressed in Escherichia coli resulted in the production of functionally active 50-kDa NMT. Ultrastructural and immunolocalization of NMT utilizing the immunogold labeling technique demonstrated cytoplasmic distribution with occasional mitochondrial and myofilaments localization of the NMT antibody. Cardiac muscle NMT has a higher affinity for myristoyl-CoA than toward palmitoyl-CoA. Substrate specificity indicated that cNMT has a higher affinity toward pp60src and M2 gene segment of reovirus type 3-derived peptide substrates than toward cAMP-dependent protein kinase-derived peptide. Primary translational product of cNMT sequence contained several regions rich in proline, glutamic acid, serine, and threonine, which are known as "PEST" regions. PEST-FIND analysis of the amino acid sequences indicated eight PEST regions were present in the cNMT. These PEST regions are suggested to be recognized by specific proteases, particularly Ca(2+)-dependent neutral proteases, calpains, which are responsible for the degradation of PEST-containing proteins. We have demonstrated the abolishment of NMT activity and NMT protein degradation in vitro by m-calpain. The proteolysis of cNMT by m-calpain and the abolishment of NMT activity was prevented by the calpain inhibitor, calpastatin. These observations indicate that calpains may regulate NMT activity. This article was published in Exp Cell Res and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords