alexa n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2 PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway.


Journal of Cancer Science & Therapy

Author(s): Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S,

Abstract Share this page

Abstract n-3 Polyunsaturated fatty acids (PUFAs) inhibit the development of microvessels in mammary tumors growing in mice. Human colorectal tumors produce vascular endothelial growth factor (VEGF) whose expression is up-regulated in tumor cells by both cyclooxygenase-2 (COX-2) and PGE(2) and directly correlated to neoangiogenesis and clinical outcome. The goal of this study was to examine the capability of n-3 PUFAs to regulate VEGF expression in HT-29 human colorectal cells in vitro and in vivo. Constitutive VEGF expression was augmented in cultured HT-29 cells by serum starvation and the effects of eicosapentaenoic (EPA) or docosahexaenoic acid (DHA) on VEGF, COX-2, phosphorylated extracellular signal-regulated kinase (ERK)-1 and -2 and hypoxia-inducible-factor 1-alpha (HIF-1alpha) expression and PGE(2) levels were assessed. Tumor growth, VEGF, COX and PGE(2) analysis were carried out in tumors derived from HT-29 cells transplanted in nude mice fed with either EPA or DHA. Both EPA and DHA reduced VEGF and COX-2 expression and PGE(2) levels in HT-29 cells cultured in vitro. Moreover, they inhibited ERK-1 and -2 phosphorylation and HIF-1alpha protein over-expression, critical steps in the PGE(2)-induced signaling pathway leading to the augmented expression of VEGF in colon cancer cells. EPA always showed higher efficacy than DHA in vitro. Both fatty acids decreased the growth of the tumors obtained by inoculating HT-29 cells in nude mice, microvessel formation and the levels of VEGF, COX-2 and PGE(2) in tumors. The data provide evidence that these n-3 PUFAs are able to inhibit VEGF expression in colon cancer cells and suggest that one possible mechanism involved may be the negative regulation of the COX-2/PGE(2) pathway. Their potential clinical application as anti-angiogenic compounds in colon cancer therapy is proposed. This article was published in Carcinogenesis and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version