alexa NADPH oxidase and endothelial cell function.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Ray R, Shah AM

Abstract Share this page

Abstract Intracellular ROS (reactive oxygen species) such as superoxide and H2O2 have been increasingly appreciated to have a role in endothelial pathophysiology. Of the several sources within the vasculature, a family of multi-subunit NADPH oxidases appears to be a predominant contributor of endothelial superoxide. More importantly, this enzyme system is activated by numerous stimuli and is involved in triggering diverse intracellular signalling pathways ('redox-sensitive' signalling pathways) that have a central role in conditions such as endothelial activation and inflammation, cell growth, apoptosis and hypertrophy. Furthermore, NADPH oxidase-derived superoxide contributes to the impairment of endothelium-dependent vasodilatation by inactivating nitric oxide; the resultant endothelial dysfunction is implicated in the pathophysiology of diseases such as atherosclerosis, hypertension, diabetic vasculopathy and heart failure. A detailed understanding of the regulation of NADPH oxidases and their modulation and downstream effects may define novel therapeutic targets for cardiovascular disease prevention and treatment in the clinical setting, in contrast with global antioxidant therapy which has to date been disappointing. This article was published in Clin Sci (Lond) and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version