alexa NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT,

Abstract Share this page

Abstract BACKGROUND & AIMS: Growth factors, such as insulin-like growth factor-1 (IGF-I), protect pancreatic cancer (PaCa) cells from death. We recently showed that reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase Nox4 mediate the antiapoptotic effect of growth factors. Here, we examine the mechanisms of the antiapoptotic role of NADPH oxidase. We hypothesized that ROSs produced by NADPH oxidase inhibit key protein tyrosine phosphatases (PTPs) and thus sustain the activation of kinases mediating antiapoptotic pathways in PaCa cells. METHODS: Transfections and pharmacologic inhibition were used to assess the effects of NADPH oxidase on Janus kinase 2 (JAK2) kinase, the low molecular weight-protein tyrosine phosphatase (LMW-PTP), and apoptosis. RESULTS: We found that 1 target of ROSs is JAK2, an important antiapoptotic kinase in PaCa cells. Both serum-induced and IGF-I biphasic JAK2 phosphorylation, with a rapid (minutes) and transient first phase, and a slow and sustained (24-72 hours) second phase. Nox4 mediated the sustained phase of JAK2 phosphorylation, which was required for the antiapoptotic effects of IGF-I and serum. Transfection experiments identified the LMW-PTP as a negative regulator of sustained JAK2 phosphorylation. Growth factors inhibited LMW-PTP through its oxidation by NADPH oxidase. LMW-PTP colocalizes with Nox4 both in PaCa cells and in human pancreatic adenocarcinoma. CONCLUSIONS: The results suggest a novel signaling pathway, in which NADPH oxidase activation results in inhibition of PTPs, such as LMW-PTP, leading, in turn, to enhanced and sustained phosphorylation of kinases, such as JAK2, and suppression of apoptosis. This pathway mediates the prosurvival effect of ROSs and suggests new targets for pancreatic cancer treatment. This article was published in Gastroenterology and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords