alexa Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
Chemistry

Chemistry

Journal of Physical Chemistry & Biophysics

Author(s): Keten S, Xu Z, Ihle B, Buehler MJ

Abstract Share this page

Abstract Silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials known. The exceptional strength of silkworm and spider silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintuitive because the key molecular interactions in beta-sheet nanocrystals are hydrogen bonds, one of the weakest chemical bonds known. Here we report a series of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrystals confined to a few nanometres achieve higher stiffness, strength and mechanical toughness than larger nanocrystals. We illustrate that through nanoconfinement, a combination of uniform shear deformation that makes most efficient use of hydrogen bonds and the emergence of dissipative molecular stick-slip deformation leads to significantly enhanced mechanical properties. Our findings explain how size effects can be exploited to create bioinspired materials with superior mechanical properties in spite of relying on mechanically inferior, weak hydrogen bonds. This article was published in Nat Mater and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords