alexa Nanodiscs as a new tool to examine lipid-protein interactions.


Journal of Blood Disorders & Transfusion

Author(s): Schuler MA, Denisov IG, Sligar SG

Abstract Share this page

Abstract Nanodiscs are self-assembled discoidal fragments of lipid bilayers 8-16 nm in diameter, stabilized in solution by two amphipathic helical scaffold proteins. As stable and highly soluble membrane mimetics with controlled lipid composition and ability to add affinity tags to the scaffold protein, nanodiscs represent an attractive model system for solubilization, isolation, purification, and biophysical and biochemical studies of membrane proteins. In this chapter we overview various approaches to structural and functional studies of different classes of integral membrane proteins such as ion channels, transporters, GPCR and other receptors, membrane enzymes, and blood coagulation cascade proteins which have been incorporated into nanodiscs. We outline the advantages provided by homogeneity, ability to control oligomerization state of the target protein and lipid composition of the bilayer. Special attention is paid to the opportunities afforded by nanodisc system for the detailed studies of the role of different lipid properties and protein-lipid interactions in the functional behavior of membrane proteins.
This article was published in Methods Mol Biol and referenced in Journal of Blood Disorders & Transfusion

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version