alexa Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Kwon KY, Youn J, Kim JH, Park Y, Jeon C,

Abstract Share this page

Abstract Nanoscale enzyme reactors (NERs) of glucose oxidase in conductive mesoporous carbons were prepared in a two-step process of enzyme adsorption and follow-up enzyme crosslinking. MSU-F-C, a mesoprous carbon, has a bottleneck pore structure with mesocellular pores of 26 nm connected with window mesopores of 17 nm. This structure enables the ship-in-a-bottle mechanism of NERs, which effectively prevents the crosslinked enzymes in mesocellular pores from leaching through the smaller window mesopores. This NER approach not only stabilized the enzyme but also expedited electron transfer between the enzyme and the conductive MSU-F-C by maintaining a short distance between them. In a comparative study with GOx that was simply adsorbed without crosslinking, the NER approach was proven to be effective in improving the sensitivity of glucose biosensors and the power density of biofuel cells. The power density of biofuel cells could be further improved by manipulating several factors, such as by adding a mediator, changing the order of adsorption and crosslinking, and inserting a gold mesh as an electron collector. Copyright © 2010 Elsevier B.V. All rights reserved. This article was published in Biosens Bioelectron and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords