alexa NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M,

Abstract Share this page

Abstract The neural cell adhesion molecule NCAM plays an important role in axonal growth, learning, and memory. A signaling pathway has been elucidated in which clustering of the NCAM140 isoform in the neural plasma membrane stimulated the activating phosphorylation of mitogen-activated protein kinases (MAPKs) and the transcription factor cyclic AMP response-element binding protein (CREB). NCAM clustering transiently induced dual phosphorylation (activation) of the MAPKs ERK1 and ERK2 (extracellular signal-regulated kinases) by a pathway regulated by the focal adhesion kinase p125fak, p59fyn, Ras, and MAPK kinase. CREB phosphorylation at serine 133 induced by NCAM was dependent in part on an intact MAPK pathway. c-Jun N-terminal kinase, which is associated with apoptosis and cellular stress, was not activated by NCAM. Inhibition of the MAPK pathway in rat cerebellar neuron cultures selectively reduced NCAM-stimulated neurite outgrowth. These results define an NCAM signal transduction mechanism with the potential for modulating the expression of genes needed for axonal growth, survival, and synaptic plasticity.
This article was published in J Neurobiol and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version