alexa Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR.
Geology & Earth Science

Geology & Earth Science

Journal of Remote Sensing & GIS

Author(s): Oskin ME, Arrowsmith JR, Hinojosa Corona A, Elliott AJ, Fletcher JM,

Abstract Share this page

Abstract Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah. This article was published in Science and referenced in Journal of Remote Sensing & GIS

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd World Congress on GIS and Remote Sensing
    July 20-21, 2017 Munich, Germany
  • 3rd World Congress on GIS and Remote Sensing
    September 04-05, 2017 Philadelphia, Pennsylvania, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords