alexa NEMO modulates radiation-induced endothelial senescence of human umbilical veins through NF-κB signal pathway.
Medicine

Medicine

Translational Medicine

Author(s): Dong X, Tong F, Qian C, Zhang R, Dong J,

Abstract Share this page

Abstract Recently several laboratories have reported that radiation induces senescence in endothelial cells. Senescent cells can secrete multiple growth-regulatory proteins, some of which affect tumor growth, survival, invasion or angiogenesis. The purpose of this study was to explore the mechanisms of radiation-induced senescence and its effects on angiogenesis in human umbilical vein endothelial cells (HUVECs). HUVECs were either pretreated with or without PS1145 prior to irradiation with 0-8 Gy. PS1145 is a novel, highly specific small-molecule inhibitor of nuclear factor kappa B essential modulator (NEMO). MTT assays showed that in HUVECs untreated with PS1145, there was an increase in the number of radiation-induced senescence-like endothelial cells 5 days after 8 Gy irradiation, while pretreatment with PS1145 significantly ameliorated the induction in senescence of HUVECs compared to the control group. Electrophoretic mobility shift assay (EMSA) showed that pretreatment with PS1145 inhibited the radiation-induced NF-κB activation, which regulates cell fate in response to genotoxic stress. In addition, Western blotting demonstrated less translocation of p65 from cytoplasm to nucleus. Furthermore, real-time polymerase chain reaction (PCR) showed that pretreatment with PS1145 inhibited the increase of mRNA expressions of interleukin-6 (IL-6) and p53-induced death domain (PIDD) protein, which have been show to play crucial roles in both senescence and apoptosis (P < 0.05). TUNEL staining revealed an increase in apoptotic HUVECs in the group pretreated with PS1145 after irradiation. The series of functional assays further showed that radiation-induced senescence-like HUVECs had malfunctions in migration, invasion and formation of capillary-like structures, compared with the sham-irradiated and untreated, irradiated groups. Taken together, these findings indicate that the angiogenic capacity of radiation-induced senescence-like HUVECs decreased, and that irradiation caused vascular endothelial cells to gain a senescence-like phenotype through the DSB/NEMO/NF-κB signal pathway. The data suggests that NEMO may be a critical switch that regulates cellular senescence and apoptosis caused by exposure to radiation, and provides new clues for the clinical potential of the combination of radiotherapy and angiogenesis inhibitors. This article was published in Radiat Res and referenced in Translational Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version