alexa Neural responses to relative speed in the primary visual cortex of rhesus monkey.


Journal of Clinical & Experimental Ophthalmology

Author(s): Cao A, Schiller PH

Abstract Share this page

Abstract Relative motion information, especially relative speed between different input patterns, is required for solving many complex tasks of the visual system, such as depth perception by motion parallax and motion-induced figure/ground segmentation. However, little is known about the neural substrate for processing relative speed information. To explore the neural mechanisms for relative speed, we recorded single-unit responses to relative motion in the primary visual cortex (area VI) of rhesus monkeys while presenting sets of random-dot arrays moving at different speeds. We found that most VI neurons were sensitive to the existence of a discontinuity in speed, that is, they showed higher responses when relative motion was presented compared to homogenous field motion. Seventy percent of the neurons in our sample responded predominantly to relative rather than to absolute speed. Relative speed tuning curves were similar at different center-surround velocity combinations. These relative motion-sensitive neurons in macaque area VI probably contribute to figure/ground segmentation and motion discontinuity detection.
This article was published in Vis Neurosci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version