alexa Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor.
Microbiology

Microbiology

Virology & Mycology

Author(s): Blesch A, Uy HS, Diergardt N, Tuszynski MH

Abstract Share this page

Abstract The delivery of neurotrophic factors to the adult nervous system has potential applications for the treatment of neurodegenerative diseases and trauma. In vivo and ex vivo gene therapy offer a means of delivering growth factors and other therapeutic substances to the central nervous system (CNS) in an intraparenchymal, accurately targeted, and regionally restricted manner. Ideally, gene therapy delivery systems should also be regulatable, allowing exogenous control of amount of gene product delivery. In the present experiment, a tetracycline-regulatable gene expression system was generated to determine whether controllable release of nerve growth factor (NGF) and green fluorescent protein (GFP) from primary rat fibroblasts could modulate biological responses (neurite outgrowth) in vitro. Using a tetracycline-repressible construct, it was found that NGF mRNA, NGF protein, and NGF-induced neurite outgrowth could be tightly regulated within a 24 hour period, and in a dose-dependent fashion, by exposure to the tetracycline analog doxycycline. Similarly, levels of green fluorescence could be regulated in GFP-transfected cells. These findings in a neurobiological system lay the framework for future studies using regulated neurotrophin delivery in in vivo models of neurodegenerative diseases and CNS injury. Copyright 2000 Wiley-Liss, Inc. This article was published in J Neurosci Res and referenced in Virology & Mycology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords