alexa Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses.
General Science

General Science

Biological Systems: Open Access

Author(s): Arnsten AF, Wang MJ, Paspalas CD

Abstract Share this page

Abstract This review describes unique neuromodulatory influences on working memory prefrontal cortical (PFC) circuits that coordinate cognitive strength with arousal state. Working memory arises from recurrent excitation within layer III PFC pyramidal cell NMDA circuits, which are afflicted in aging and schizophrenia. Neuromodulators rapidly and flexibly alter the efficacy of these synaptic connections, while leaving the synaptic architecture unchanged, a process called dynamic network connectivity (DNC). Increases in calcium-cAMP signaling open ion channels in long, thin spines, gating network connections. Inhibition of calcium-cAMP signaling by stimulating α2A-adrenoceptors on spines strengthens synaptic efficacy and increases network firing, whereas optimal stimulation of dopamine D1 receptors sculpts network inputs to refine mental representation. Generalized increases in calcium-cAMP signaling during fatigue or stress disengage dlPFC recurrent circuits, reduce firing and impair top-down cognition. Impaired DNC regulation contributes to age-related cognitive decline, while genetic insults to DNC proteins are commonly linked to schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.
This article was published in Neuron and referenced in Biological Systems: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords