alexa Neuromuscular neutral zones response to static lumbar flexion: muscular stability compensator.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Novel Physiotherapies

Author(s): Youssef J, Davidson B, Zhou BH, Lu Y, Patel V,

Abstract Share this page

Abstract BACKGROUND: The impact of six sequential static loading and rest of the lumbar spine on the changes in the neuromuscular neutral zones and thereby on spine stability was assessed. METHODS: Six 10 min sessions of static load of a moderate level each spaced by 10 min rest were applied to the in vivo feline model. Test cycles of 0.25 Hz and at the same moderate peak load were applied before and every hour after the static loading sequence up to 7h. Load, displacement and electromyographic activity of the lumbar multifidi muscles were recorded throughout. FINDINGS: Displacement and tension neuromuscular neutral zones were defined as the displacement or tension, in the increase and decrease phases of each cycle, when the electromyogram initiated and ceased activity, respectively. Displacement neuromuscular neutral zones demonstrated significant (P<0.001) increase immediately post-static loading, followed by an exponential decrease to pre-loading baseline by the 7th hour. Tension neuromuscular neutral zones, however, demonstrated significant (P<0.001) increase in the 2h immediately after the static loading and a significant decrease (P<0.001) thereafter. Peak electromyogram decreased in the first 3h post-loading, but significantly (P<0.001) increased thereafter to the 7th hour. INTERPRETATION: It was concluded that the first 2-3h post-static loading finds the spine with significant laxity in the viscoelastic tissues concurrently with deficient muscular activation and therefore exposed to the risk of instability. It is also evident that a neural control compensation mechanism exists where it enhances the activation of the musculature to earlier and at higher activation magnitude, 2-3h post-loading, increasing lumbar stability while the viscoelastic tissues are still lax. This article was published in Clin Biomech (Bristol, Avon) and referenced in Journal of Novel Physiotherapies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version