alexa Neuron-glia interactions of rat hippocampal cells in vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Gasser UE, Hatten ME

Abstract Share this page

Abstract To examine neuron-glia interactions of hippocampal cells, including glial-guided neuronal migration, glial organization of neuronal positioning and neuronal regulation of astroglial differentiation, rat hippocampal tissue, harvested between embryonic day 16 (E16) and postnatal day 3 (P3), was dissociated into a single cell suspension and plated in glass coverslip microcultures (Hatten and Liem, 1981; Hatten et al., 1984). Immunostaining the cells with antibodies against the glial filament protein (AbGFP) revealed developmental stage-specific changes in the number and extent of morphological differentiation of hippocampal astroglial cells. At E16-E18, fewer than 5\% of the cells were AbGFP-positive; stained cells were immature, bearing very short processes. By E19-E20, the number of stained cells increased to 15\% of the total cell population. Three forms of differentiated glial cells predominated, a bipolar form bearing processes 30-50 microns, an elongated form which resembled the radial glia of hippocampus, bearing processes 120 microns in length, and a stellate form with 3 or more processes 30-50 microns in length. At P0-P3, glial morphological differentiation varied with the culture substratum; differentiated forms resembling those seen at E20 occurred on Matrigel, but not on polylysine. Quantitation of the distribution of neurons relative to AbGFP-stained glial processes revealed developmental stage-specific changes in glial organization of neuronal positioning in the cultures. In cultures of E16-E18 hippocampal cells, the neurons did not preferentially associate with astroglial cells. By E19-E20, extensive neuron-glia interactions occurred, with 80-90\% of the neurons being located within 5-10 microns of a glial process. In addition to their organization of neuronal positioning, E20 hippocampal astroglial cells supported extensive neuronal migration. Migrating hippocampal neurons displayed a cytology and neuron-glia cell apposition identical to that described for migrating cerebellar granule cells in vitro (Edmondson and Hatten, 1987), closely apposing their cell soma against the hippocampal glial process and moving along the glial arm by extending a thickened, leading process. Migration was seen only along highly elongated glial profiles resembling radial glial seen in vivo. The morphological differentiation of hippocampal glial cells in vitro was dependent on cell-cell interactions with neurons. In the absence of neurons, purified hippocampal astroglia had flat, undifferentiated profiles and proliferated rapidly. The addition of hippocampal neurons rapidly arrested glial growth and induced glial process extension.
This article was published in J Neurosci and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords