alexa New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): LaySon M, Drakides C

Abstract Share this page

Abstract Biological treatment of coke and steel-processing wastewaters has to satisfy both industrial economic needs and environmental protection regulations. Nevertheless, as some of the pollutants contained in these waters or produced during the treatment are highly toxic, an effective and safe treatment has proved to be difficult to obtain. This paper reports the study of a biological method for the treatment of wastewaters containing free cyanide, thiocyanate and ammonium (NH4). Laboratory-scale activated-sludge reactors were fed with a synthetic solution reproducing a steel-processing industrial wastewater and inoculated with the same industrial bacterial seeding used on-site (Ecosynergie Inc.). The results demonstrated that free cyanide and thiocyanate were efficiently degraded. Nevertheless, thiocyanate degradation and nitrification processes were actually inhibited by the free ammonia form (NH3) in place of the ionized NH4 form (NH4+) currently dosed and often unproperly named "ammonia" [IUPAC, 1997. In: McNaught, A.D., Wilkinson, A. (compilers). Compendium of Chemical Terminology. Royal Society of Chemistry, Cambridge, UK]. Optimum degradation rates were obtained for very narrow ranges of ammonia nitrogen (NH3-N) concentrations. This result can be explained by the role of pH, which mainly controls the NH3/NH4 equilibrium. Pollutants and NH3 concentrations influenced degradation rates of main pollutants. This influence was determined and expressed through elementary equations. Although the Michaelis-Menten equation could have been used to describe thiocyanate degradation, a Haldane-inhibition model was used to satisfactorily describe cyanide degradation. On the other hand, a slightly modified Haldane model was applied to describe both NH4 oxidation using NH3-N as substrate and thiocyanate degradation using NH3-N as inhibitor. These findings emphasize the role of pH on degradation rates and allow one to optimize operational conditions in the biological treatment of coke and steel industrial wastewaters. This article was published in Water Res and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords