alexa New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imageryin complex coastal waters
Chemistry

Chemistry

Journal of Environmental Analytical Chemistry

Author(s): Palanisamy Shanmugam, YuHwan Ahn

Abstract Share this page

There exists a large demand for an accurate atmospheric correction of satellite ocean colour data over highly turbid coastal waters, where the standard atmospheric correction (SAC) algorithms designed for open ocean water turn out to be unsuccessful because of eventual interference of elevated radiance from suspended materials and perhaps the shallow bottom with the corrections based on the two near-infrared bands at 765 and 865 nm in which the water-leaving radiances are discarded (or modelled) in order to estimate aerosol radiative properties and extrapolate these into the visible spectrum in the atmospheric correction of the imagery. Furthermore, in the presence of strongly absorbing aerosols (e.g. Asian dust and Sahara dust) the SAC algorithms often underestimate water-leaving radiance values in the violet and blue spectrum or completely fail to deliver the desired biogeochemical products for coastal regions. To make the satellite ocean colour data offer unrivaled utility in monitoring and quantifying the components of ecologically important coastal waters, this study presents a more realistic and cost-effective image-based atmospheric correction method to accurately retrieve water-leaving radiances and chlorophyll concentrations from SeaWiFS imagery in the presence of strongly absorbing aerosols over highly turbid Northwest Pacific coastal waters. This method is a modified version of the spectral shape matching method (SSMM) previously developed by Ahn and Shanmugam (2004 Korean J. Remote Sens. 20 289–305), re-treating the assumption of spatial homogeneity of the atmosphere using simple models for assessing the contributions of aerosol and molecular scattering. Because of the difficulties in making atmospheric measurements concurrently with each overpass of SeaWiFS the atmospheric diffuse transmittance values are dependent on a standard method with the SAC scheme designed for processing SeaWiFS ocean colour data. The new method is extensively tested under the presence of various atmospheric conditions using SeaWiFS imagery and the results are compared with in situ (ship-borne) measurements in highly turbid coastal waters of the Korean Southwest Sea (KSWS). Such comparison demonstrates the efficiency of SSMM in terms of removing the effects of strongly absorbing aerosols (Asian dust) and improving the accuracy of water-leaving radiance retrieval with an RMSE deviation of 0.076, in contrast with 0.326 for the SAC algorithm which masked most of the sediment-laden and aerosol-dominated coastal areas. Further comparison in the Yellow Sea waters representing a massive phytoplankton bloom on 27 March 2002 revealed that the SAC algorithm caused an excessive correction for the visible bands, with the 412 nm band being affected the most, leading to severe overestimation of chlorophyll concentrations in the bloom-contained waters. In contrast, the SSMM remained very effective in terms of reducing errors of both water-leaving radiance and chlorophyll concentration estimates.

  • To read the full article Visit
  • Subscription
This article was published in Journal of Optics A: Pure and Applied Optics and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords