alexa New cationic exchanger support for reversible immobilization of proteins.


Journal of Microbial & Biochemical Technology

Author(s): Fuentes M, Maquiese JV, Pessela BC, Abian O, FernndezLafuente R,

Abstract Share this page

Abstract New tailor-made cationic exchange resins have been prepared by covalently binding aspartic-dextran polymers (e.g. MW 15 000-20 000) to porous supports (aminated agarose and Sepabeads). More than 80\% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans have been strongly adsorbed on these porous materials at pH 5. This interaction was stronger than in conventional carboxymethyl cellulose (e.g., at pH 7 and 25 degrees C, all proteins previously adsorbed at pH 5 were released from carboxymethyl cellulose, whereas no protein was released from the new supports under similar conditions). Ionic exchange properties of such composites were strongly dependent on the size of the aspartic-dextran polymers as well as on the exact conditions of the covalent coating of the solids with the polymer (optimal conditions: 100 mg aspartic-dextran 20 000/(mL of support); room temperature). Finally, some industrially relevant enzymes (Kluyveromices lactis, Aspergillus oryzae, and Thermus sp. beta-galactosidases, Candida antarctica B lipase, and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recovery and immobilization rates. After enzyme inactivation, the enzyme can be fully desorbed from the support and the support could be reused for several cycles. This article was published in Biotechnol Prog and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version