alexa New insights into evolution of IgT genes coming from Antarctic teleosts


Immunogenetics: Open Access

Author(s): Stefano Giacomelli, Francesco Buonocore, Fabio Albanese, Giuseppe Scapigliati, Marco Gerdol

Abstract Share this page

Cloning and characterization of IgT heavy chain genes were performed in the Antarctic Notothenioid teleost Trematomus bernacchii and in a non-Antarctic Notothenioid species, Bovichtus diacanthus, belonging to a phyletically basal lineage of Notothenioids. Compared to IgT from other non-Antarctic teleost species, including B. diacanthus, T. bernacchii IgT lacked most of the second constant domain but maintained only a few amino acid residues, which could be aligned to B. diacanthus CH2 domain. By analyzing several cDNA clones from a single specimen, three differently sized IgT transcript variants, named Long, Short and Shortest, were identified. Genomic analysis of T. bernacchii and B. diacanthus IgH loci revealed that, in the case of T. bernacchii, within the intron between the exons coding for the entire first and second constant domains a reminiscence of the ancestral second exon was present. The Long and Short variants were found to be encoded by indel alleles, whereas the Shortest variant was generated by alternative splicing that led to the CH2 exonic remnant skipping. Through comparison between genomic and cDNA sequences we hypothesized the presence of three different copies of the IgT heavy chain gene, one of which being considered the functional gene since the corresponding transcripts were identified. Moreover, either Long or Short exonic variants were found to be used in IgT heavy chain membrane form in an unbiased manner, as seen for the secretory form. Phylogenetic analysis was performed on the constant region from all teleost IgT available to date, including IgT from another Antarctic Notothenioid species, Notothenia coriiceps, identified by searching the transcriptome. The loss of almost an entire domain together with the conservation of some amino acids such as proline, glycine and cysteine in the CH2 domain remnant, could be interpreted as another distinctive feature of the Antarctic fish genome evolution, providing also new insights into the structural variation of teleost immunoglobulin genes.

This article was published in Marine Genomics and referenced in Immunogenetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version