alexa New insights into the molecular mechanisms of action of bisphosphonates.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Engineering and Medical Devices

Author(s): Rogers MJ

Abstract Share this page

Abstract Bisphosphonates are currently the most important and effective class of anti-resorptive drugs available, but the exact molecular mechanisms by which they inhibit osteoclast-mediated bone resorption have only recently been identified. Due to the targeting of bisphosphonates to bone mineral and the ability of osteoclasts to release bone-bound bisphosphonate, a direct effect on mature osteoclasts appears to be the most important route of action. As a result of recent discoveries concerning their molecular mechanism of action, bisphosphonates can be grouped into two classes. The simple bisphosphonates that closely resemble PPi (such as clodronate, etidronate and tiludronate) can be metabolically incorporated into non-hydrolysable analogues of ATP that accumulate intracellularly in osteoclasts, resulting in induction of osteoclast apoptosis. By contrast, the more potent, nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. Loss of bone-resorptive activity and osteoclast apoptosis is due primarily to loss of geranylgeranylated small GTPases. Identification of FPP synthase as the target of nitrogen-containing bisphosphonates has also helped explain the molecular basis for the adverse effects of these agents in the GI tract and on the immune system.
This article was published in Curr Pharm Des and referenced in Journal of Biomedical Engineering and Medical Devices

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]e.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords