alexa New strategies for novel antibiotics: peptides targeting bacterial cell membranes.
Biochemistry

Biochemistry

Journal of Membrane Science & Technology

Author(s): Lohner K

Abstract Share this page

Abstract Membranes are targets of host defence or antimicrobial peptides, effector molecules of innate immunity that evolved in nature to contend with invaders as an active system of defence. The different physicochemical properties of the lipids found in biological membranes allow antimicrobial peptides to discriminate between bacterial and mammalian cell membranes. Such cationic amphipathic peptides will interact predominantly with negatively charged lipids exposed on the outer leaflet of bacterial cell membranes. The molecular mechanism(s) of membrane rupture mutually depends on the nature of the peptide and membrane lipid composition. Biophysical studies demonstrated a complex behavior in terms of membrane perturbation, which can range from pore formation to micellization (carpet model). Peptides aligned parallel to the membrane surface can induce a quasi-interdigitated structure in the gel phase, while depending on the hydrophobic matching of the lipid bilayer core and the peptide membrane thinning or thickening can be observed in the fluid phase. As a consequence, besides of peptide-lipid pores, formation of peptide-enriched membrane domains and promotion of cubic structures can be observed, which adversely affect membrane integrity and function. A strategy using the membrane damaging properties of these peptides will form the basis for the development of such peptides as potential novel antibiotic drugs.
This article was published in Gen Physiol Biophys and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords