alexa New targets for drug discovery against malaria.
Infectious Diseases

Infectious Diseases

Malaria Control & Elimination

Author(s): Santos G, Torres NV

Abstract Share this page

Abstract A mathematical model which predicts the intraerythrocytic stages of Plasmodium falciparum infection was developed using data from malaria-infected mice. Variables selected accounted for levels of healthy red blood cells, merozoite (Plasmodium asexual phase) infected red blood cells, gametocyte (Plasmodium sexual phase) infected red blood cells and a phenomenological variable which accounts for the mean activity of the immune system of the host. The model built was able to reproduce the behavior of three different scenarios of malaria. It predicts the later dynamics of malaria-infected humans well after the first peak of parasitemia, the qualitative response of malaria-infected monkeys to vaccination and the changes observed in malaria-infected mice when they are treated with antimalarial drugs. The mathematical model was used to identify new targets to be focused on drug design. Optimization methodologies were applied to identify five targets for minimizing the parasite load; four of the targets thus identified have never before been taken into account in drug design. The potential targets include: 1) increasing the death rate of the gametocytes, 2) decreasing the invasion rate of the red blood cells by the merozoites, 3) increasing the transformation of merozoites into gametocytes, 4) decreasing the activation of the immune system by the gametocytes, and finally 5) a combination of the previous target with decreasing the recycling rate of the red blood cells. The first target is already used in current therapies, whereas the remainders are proposals for potential new targets. Furthermore, the combined target (the simultaneous decrease of the activation of IS by gRBC and the decrease of the influence of IS on the recycling of hRBC) is interesting, since this combination does not affect the parasite directly. Thus, it is not expected to generate selective pressure on the parasites, which means that it would not produce resistance in Plasmodium.
This article was published in PLoS One and referenced in Malaria Control & Elimination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version