alexa NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance.


Immunotherapy: Open Access

Author(s): Cao N, Li S, Wang Z, Ahmed KM, Degnan ME, , Cao N, Li S, Wang Z, Ahmed KM, Degnan ME, , Cao N, Li S, Wang Z, Ahmed KM, Degnan ME, , Cao N, Li S, Wang Z, Ahmed KM, Degnan ME,

Abstract Share this page

Abstract The molecular mechanisms governing acquired tumor resistance during radiotherapy remain to be elucidated. In breast cancer patients, overexpression of HER2 (human epidermal growth factor receptor 2) is correlated with aggressive tumor growth and increased recurrence. In the present study, we demonstrate that HER2 expression can be induced by radiation in breast cancer cells with a low basal level of HER2. Furthermore, HER2-postive tumors occur at a much higher frequency in recurrent invasive breast cancer (59\%) compared to the primary tumors (41\%). Interestingly, NF-kappaB is required for radiation-induced HER2 transactivation. HER2 was found to be co-activated with basal and radiation-induced NF-kappaB activity in radioresistant but not radiosensitive breast cancer cell lines after long-term radiation exposure, indicating that NF-kappaB-mediated HER2 overexpression is involved in radiation-induced repopulation in heterogeneous tumors. Finally, we found that inhibition of HER2 resensitizes the resistant cell lines to radiation. Since HER2 is shown to activate NF-kappaB, our data suggest a loop-like HER2-NF-kappaB-HER2 pathway in radiation-induced adaptive resistance in breast cancer cells.
This article was published in Radiat Res and referenced in Immunotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version