alexa Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Bates JN, Baker MT, Guerra R Jr, Harrison DG

Abstract Share this page

Abstract Nitric oxide (NO) was produced from sodium nitroprusside in the presence of vascular tissue but was not released spontaneously from the nitroprusside anion. In the absence of tissue in the dark nitroprusside did not release NO. When solutions of nitroprusside alone were irradiated with visible light, nitric oxide was released at rates linearly proportional to nitroprusside concentration and light intensity. Nitric oxide was produced from solutions of nitroprusside in the dark after the addition of vascular tissue, including lengths of rabbit aorta, subcellular fractions of aorta, and human plasma. NO was also released from nitroprusside after reaction with various reducing agents including cysteine and other thiols, ascorbic acid, sodium dithionite, ferrous chloride, hemoglobin, myoglobin, and partially purified cytochrome P450 with an NADPH-regenerating system. HCN was simultaneously produced in these solutions, and addition of KCN blocked NO release. Iodine oxidized intermediate cyanoferrates and blocked nitric oxide release. KCN or iodine also blocked NO production by tissue, but had no effect upon photochemical NO release. These results show that, apart from photolysis which makes no physiological contribution, release of nitric oxide from nitroprusside, in simple solutions and in biological tissue, occurs after nitroprusside has undergone reduction and lost cyanide.
This article was published in Biochem Pharmacol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version