alexa Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat.
Anesthesiology

Anesthesiology

Journal of Pain & Relief

Author(s): Meller ST, Pechman PS, Gebhart GF, Maves TJ

Abstract Share this page

Abstract Recent evidence has shown that activation of the N-methyl-D-aspartate receptor mediates the thermal hyperalgesia produced in a model of neuropathic pain. As the acute nociceptive effects of N-methyl-D-aspartate have been reported to be mediated through production of nitric oxide and activation of soluble guanylate cyclase, these experiments were designed to determine whether the thermal hyperalgesia produced in a rat model of neuropathic pain is also mediated through the production of nitric oxide and activation of soluble guanylate cyclase. Loose ligation of the sciatic nerve with chromic gut sutures, but not bilateral sham rats, demonstrated evidence of a marked thermal hyperalgesia on day 3 post-surgery. In bilateral sham rats, intrathecal administration of either an alternate substrate for nitric oxide synthase, NW-nitro-L-arginine methyl ester, or the soluble guanylate cyclase inhibitor, Methylene Blue, did not produce any change in thermal nociceptive withdrawal latencies. These same treatments blocked the thermal hyperalgesia in rats with chromic gut ligatures for a period of 2 and 4 h, respectively. These results suggest that a sustained production of nitric oxide and subsequent activation of soluble guanylate cyclase in the lumbar spinal cord mediate the thermal hyperalgesia produced in a model of neuropathic pain in the rat.
This article was published in Neuroscience and referenced in Journal of Pain & Relief

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords