alexa Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Sarkar R, Meinberg EG, Stanley JC, Gordon D, Webb RC

Abstract Share this page

Abstract Augmentation of nitric oxide (NO) production in vivo decreases lesions in a variety of models of arterial injury, and inhibition of NO synthase exacerbates experimental intimal lesions. Both vascular smooth muscle cell (VSMC) proliferation and migration contribute to lesion formation. Although NO inhibits VSMC proliferation, its effects on VSMC migration are unknown. To test the hypothesis that NO inhibits VSMC migration independent of inhibition of proliferation, we examined migration of rat aortic VSMCs after wounding of a confluent culture in the presence of chemical donors of NO. Hydroxyurea was used to eliminate any confounding effect of NO on proliferation. Three NO donors, diethylamine NONOate, spermine NONOate, and S-nitrosoglutathione, exhibited concentration-dependent inhibition of both number of migrating VSMCs and maximal distance migrated. Inhibition of migration was also seen with 8-Br-cGMP, suggesting that activation of guanylate cyclase may play a role in mediating the antimigratory effects of NO. Migration resumed after removal of NO donors, as evidenced by an increase in distance migrated. Measurement of VSMC protein synthesis and mitochondrial respiration indicated that inhibition of migration by NO donors was not due to metabolic cytostasis. These findings indicate that NO reversibly inhibits VSMC migration independent of proliferation or cytotoxicity, a novel mechanism by which both endogenous and pharmacological NO may alter vascular pathology.
This article was published in Circ Res and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords