alexa Nitric oxide-mediated proteasome-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes.
Microbiology

Microbiology

Journal of Bacteriology & Parasitology

Author(s): Holzmuller P, Sereno D, Cavaleyra M, Mangot I, Daulouede S,

Abstract Share this page

Abstract Resistance to leishmanial infections depends on intracellular parasite killing by activated host macrophages through the L-arginine-nitric oxide (NO) metabolic pathway. Here we investigate the cell death process induced by NO for the intracellular protozoan Leishmania amazonensis. Exposure of amastigotes to moderate concentrations of NO-donating compounds (acidified sodium nitrite NaNO(2) or nitrosylated albumin) or to endogenous NO produced by lipopolysaccharide or gamma interferon treatment of infected macrophages resulted in a dramatic time-dependent cell death. The combined use of several standard DNA status analysis techniques (including electrophoresis ladder banding patterns, YOPRO-1 staining in flow cytofluorometry, and in situ recognition of DNA strand breaks by TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] assay) revealed a rapid and extensive fragmentation of nuclear DNA in both axenic and intracellular NO-treated amastigotes of L. amazonensis. Despite some similarities to apoptosis, the nuclease activation responsible for characteristic DNA degradation was not under the control of caspase activity as indicated by the lack of involvement of cell-permeable inhibitors of caspases and cysteine proteases. In contrast, exposure of NO-treated amastigotes with specific proteasome inhibitors, such as lactacystin or calpain inhibitor I, markedly reduced the induction of the NO-mediated apoptosis-like process. These data strongly suggest that NO-induced oligonucleosomal DNA fragmentation in Leishmania amastigotes is, at least in part, regulated by noncaspase proteases of the proteasome. The determination of biochemical pathways leading up to cell death might ultimately allow the identification of new therapeutic targets.
This article was published in Infect Immun and referenced in Journal of Bacteriology & Parasitology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords